Resource title

Robust income distribution estimation with missing data

Resource image

image for OpenScout resource :: Robust income distribution estimation with missing data

Resource description

With income distributions it is common to encounter the problem of missing data. When a parametric model is fitted to the data, the problem can be overcome by specifying the marginal distribution of the observed data. With classical methods of estimation such as the maximum likelihood (ML) an estimator of the parameters can be obtained in a straightforward manner. Unfortunately, it is well known that ML estimators are not robust estimators in the presence of contaminated data. In this paper, we propose a robust alternative to the ML estimator with truncated data, namely one based on M-estimators that we call the EMM estimator. We present an extensive simulation study where the EMM estimator based on optimal B-robust estimators (OBRE) is compared to a more conservative approach based on marginal density (MD) for truncated data, and show that the difference lies in the way the weights associated to each observation are computed. Finally, we also compare the EMM estimator based on the OBRE with the classical ML estimator when the data are contaminated, and show that contrary to the former, the latter can be seriously biased.

Resource author

Resource publisher

Resource publish date

Resource language

en

Resource content type

application/pdf

Resource resource URL

http://eprints.lse.ac.uk/6561/1/Robust_Income_Distribution_Estimation_with_Missing_Data.pdf

Resource license