Resource title

Generalised k-steiner tree problems in normed planes

Resource image

image for OpenScout resource :: Generalised k-steiner tree problems in normed planes

Resource description

The 1-Steiner tree problem, the problem of constructing a Steiner minimum tree containing at most one Steiner point, has been solved in the Euclidean plane by Georgakopoulos and Papadimitriou using plane subdivisions called oriented Dirichlet cell partitions. Their algorithm produces an optimal solution within $\mathcal{O}(n^2)$ time. In this paper we generalise their approach in order to solve the $k$-Steiner tree problem, in which the Steiner minimum tree may contain up to $k$ Steiner points for a given constant $k$. We also extend their approach further to encompass arbitrary normed planes, and to solve a much wider class of problems, including the $k$-bottleneck Steiner tree problem and other generalised $k$-Steiner tree problems. We show that, for any fixed $k$, such problems can be solved in $\mathcal{O}(n^{2k})$ time.

Resource author

Resource publisher

Resource publish date

Resource language

en

Resource content type

Resource resource URL

http://eprints.lse.ac.uk/41657/

Resource license