Resource title

General representation of epistemically optimal procedures

Resource image

image for OpenScout resource :: General representation of epistemically optimal procedures

Resource description

Assuming that votes are independent, the epistemically optimal procedure in a binary collective choice problem is known to be a weighted supermajority rule with weights given by personal log likelihood ratios. It is shown here that an analogous result holds in a much more general model. Firstly, the result follows from a more basic principle than expected-utility maximisation, namely from an axiom (“Epistemic Monotonicity”) which requires neither utilities nor prior probabilities of the ‘correctness’ of alternatives. Secondly, a person’s input need not be a vote for an alternative; it may be any type of input, for instance a subjective degree of belief or probability of the correctness of one of the alternatives. The case of a profile of subjective degrees of belief is particularly appealing, since no parameters such as competence parameters need to be known here.

Resource author

Resource publisher

Resource publish date

Resource language


Resource content type

Resource resource URL

Resource license