Random 2-SAT with prescribed literal degrees

Two classic “phase transitions” in discrete mathematics are the emergence of a giant component in a random graph as the density of edges increases, and the transition of a random 2-SAT formula from satisfiable to unsatisfiable as the density of clauses increases. The random-graph result has been extended to the case of prescribed degree sequences, where the almost-sure nonexistence or existence of a giant component is related to a simple property of the degree sequence.We similarly extend the satisfiability result, by relating the almostsure satisfiability or unsatisfiability of a random 2-SAT formula to an analogous property of its prescribed literal-degree sequence. The extension has proved useful in analyzing literal-degree-based algorithms for (uniform) random 3-SAT.

en

http://eprints.lse.ac.uk/35432/