Resource title

Topological regular variation: I. Slow variation

Resource image

image for OpenScout resource :: Topological regular variation: I. Slow variation

Resource description

Motivated by the Category Embedding Theorem, as applied to convergent automorphisms (Bingham and Ostaszewski (in press) [11]), we unify and extend the multivariate regular variation literature by a reformulation in the language of topological dynamics. Here the natural setting are metric groups, seen as normed groups (mimicking normed vector spaces). We briefly study their properties as a preliminary to establishing that the Uniform Convergence Theorem (UCT) for Baire, group-valued slowly-varying functions has two natural metric generalizations linked by the natural duality between a homogenous space and its group of homeomorphisms. Each is derivable from the other by duality. One of these explicitly extends the (topological) group version of UCT due to Bajanski and Karamata (1969) [4] from groups to flows on a group. A multiplicative representation of the flow derived in Ostaszewski (2010)[45] demonstrates equivalence of the flow with the earlier group formulation. In companion papers we extend the theory to regularly varying functions: we establish the calculus of regular variation in Bingham and Ostaszewski (2010) [13] and we extend to locally compact, sigma-compact groups the fundamental theorems on characterization and representation (Bingham and Ostaszewski (2010) [14]). In Bingham and Ostaszewski (2009) [15], working with topological flows on homogeneous spaces, we identify an index of regular variation, which in a normed-vector space context may be specified using the Riesz representation theorem, and in a locally compact group setting may be connected with Haar measure. (C) 2010 Published by Elsevier B.V.

Resource author

Resource publisher

Resource publish date

Resource language

en

Resource content type

Resource resource URL

http://eprints.lse.ac.uk/29208/

Resource license