On the existence of shortest directed networks

A digraph connecting a set A to a set B such that there is an a-b path for each a in A and b in B is a directed network. The author proves that for a finitely compact metric space in which geodesics exist, any two finite sets A and B are connected by a shortest directed network. A bound on the Steiner points is also established.

en

http://eprints.lse.ac.uk/25467/