Anomalous convergence of Lyapunov exponent estimates

Numerical experiments reveal that estimates of the Lyapunov exponent for the logistic map xt+1=f(xt)=4xt(1-xt) are anomalously precise: they are distributed with a standard deviation that scales as 1/N, where N is the length of the trajectory, not as 1/ √N , the scaling expected from an informal interpretation of the central limit theorem. We show that this anomalous convergence follows from the fact that the logistic map is conjugate to a constant-slope map. The Lyapunov estimator is just one example of a ‘‘chaotic walk’’; we show that whether or not a general chaotic walk exhibits anomalously small variance depends only on the autocorrelation of the chaotic process.

en

http://eprints.lse.ac.uk/22254/