Resource title

Estimating multiplicative and additive hazard functions by kernel methods

Resource image

image for OpenScout resource :: Estimating multiplicative and additive hazard functions by kernel methods

Resource description

We propose new procedures for estimating the component functions in both additive and multiplicativen onparametricm arker-dependenht azard models. We work with a full counting process framework that allows for left truncation and right censoring and time-varying covariates. Our procedures are based on kernel hazard estimation as developed by Nielsen and Linton and on the idea of marginal integration. We provide a central limit theorem for the marginal integration estimator. We then define estimators based on finite-step backfitting in both additive and multiplicative cases and prove that these estimators are asymptotically normal and have smaller variance than the marginal integration method.

Resource author

Resource publisher

Resource publish date

Resource language

en

Resource content type

Resource resource URL

http://eprints.lse.ac.uk/1317/

Resource license