Resource title

Building a Data Mining Framework for Target Marketing

Resource image

image for OpenScout resource :: Building a Data Mining Framework for Target Marketing

Resource description

Most retailers and scientists agree that supporting the buying decisions of individual customers or groups of customers with specific product recommendations holds great promise. Target-oriented promotional campaigns are more profitable in comparison to uniform methods of sale promotion such as discount pricing campaigns. This seems to be particulary true if the promoted products are well matched to the preferences of the customers or customer groups. But how can retailers identify customer groups and determine which products to offer them? To answer this question, this dissertation describes an algorithmic procedure which identifies customer groups with similar preferences for specific product combinations in recorded transaction data. In addition, for each customer group it recommends products which promise higher sales through cross-selling if appropriate promotion techniques are applied. To illustrate the application of this algorithmic approach, an analysis is performed on the transaction database of a supermarket. The identified customer groups are used for a simulation. The results show that appropriate promotional campaigns which implement this algorithmic approach can achieve an increase in profit from 15% to as much as 191% in contrast to uniform discounts on the purchase price of bestsellers. (author's abstract)

Resource author

Nicolas March

Resource publisher

Resource publish date

Resource language


Resource content type


Resource resource URL

Resource license

Adapt according to the license agreement. Always reference the original source and author.