Resource title

An Empirical comparison of the efficacy of covariance-based and variance-based SEM

Resource image

image for OpenScout resource :: An Empirical comparison of the efficacy of covariance-based and variance-based SEM

Resource description

Variance-based SEM, also known under the term partial least squares (PLS) analysis, is an approach that has gained increasing interest among marketing researchers in recent years. During the last 25 years, more than 30 articles have been published in leading marketing journals that have applied this approach instead of the more traditional alternative of covariance-based SEM (CBSEM). However, although an analysis of these previous publications shows that there seems to be at least an implicit agreement about the factors that should drive the choice between PLS analysis and CBSEM, no research has until now empirically compared the performance of these approaches given a set of different conditions. Our study addresses this open question by conducting a large-scale Monte-Carlo simulation. We show that justifying the choice of PLS due to a lack of assumptions regarding indicator distribution and measurement scale is often inappropriate, as CBSEM proves extremely robust with respect to violations of its underlying distributional assumptions. Additionally, CBSEM clearly outperforms PLS in terms of parameter consistency and is preferable in terms of parameter accuracy as long as the sample size exceeds a certain threshold (250 observations). Nevertheless, PLS analysis should be preferred when the emphasis is on prediction and theory development, as the statistical power of PLS is always larger than or equal to that of CBSEM; already, 100 observations can be sufficient to achieve acceptable levels of statistical power given a certain quality of the measurement model.

Resource author

Resource publisher

Resource publish date

Resource language

en

Resource content type

application/pdf

Resource resource URL

http://flora.insead.edu/fichiersti_wp/inseadwp2009/2009-44.pdf

Resource license

Copyright INSEAD. All rights reserved